Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Nanomedicine (Lond) ; 19(4): 293-301, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38270378

RESUMO

Background: Leishmaniasis, caused by the protozoan Leishmania sp., infects phagocyte cells present in lymphatic organs. This study demonstrates the influence of nanostructured lipid carrier-loaded hydroxymethylnitrofurazone (NLC-NFOH) on lymphatic uptake using a chylomicron-blocking flow model in rats. Method: Lymphatic uptake of NFOH was assessed 1 h after oral administration of dimethyl sulfoxide with NFOH or NLC-NFOH with and without cycloheximide pretreatment. Result: Dimethyl sulfoxide with NFOH and NLC-NFOH showed NFOH serum concentrations of 0.0316 and 0.0291 µg/ml, respectively. After chylomicron blocking, NFOH was not detected. Conclusion: Despite log P below 5, NFOH was successfully taken up by the lymphatic system. Long-chain fatty acids and particle size might be main factors in these findings. NLC-NFOH is a promising and convenient platform for treating leishmaniasis via oral administration.


Assuntos
Leishmaniose , Nanoestruturas , Nitrofurazona/análogos & derivados , Ratos , Animais , Dimetil Sulfóxido , Quilomícrons , Administração Oral , Portadores de Fármacos , Tamanho da Partícula
2.
Int J Pharm ; 644: 123324, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37591475

RESUMO

Lung cancer is the leading cause of cancer-related death. In addition to new innovative approaches, practical strategies that improve the efficacy of already available drugs are urgently needed. In this study, an inhalable dry powder formulation is used to repurpose flubendazole, a poorly soluble anthelmintic drug with potential against a variety of cancer lineages. Flubendazole nanocrystals were obtained through nanoprecipitation, and dry powder was produced by spray drying. Through fractional factorial design, the spray drying parameters were optimized and the impact of formulation on aerolization properties was clarified. The loading limitations were clarified through response surface methodology, and a 15% flubendazole loading was feasible through the addition of 20% L-leucine, leading to a flubendazole particle size of 388.6 nm, median mass aerodynamic diameter of 2.9 µm, 50.3% FPF, emitted dose of 83.2% and triple the initial solubility. Although the cytotoxicity of this formulation in A549 cells was limited, the formulation showed a synergistic effect when associated with paclitaxel, leading to a surprising 1000-fold reduction in the IC50. Compared to 3 cycles of paclitaxel alone, a 3-cycle model combined treatment increased the threshold of cytotoxicity by 25% for the same dose. Our study suggests, for the first time, that orally inhaled flubendazole nanocrystals show high potential as adjuvants to increase cytotoxic agents' potency and reduce adverse effects.


Assuntos
Adjuvantes Imunológicos , Nanopartículas , Pós , Adjuvantes Farmacêuticos , Paclitaxel/farmacologia
3.
Int J Pharm ; 632: 122554, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36586637

RESUMO

Dissolution testing is important in assessing the in vitro drug release performance for oral administration dosage forms. However, currently, a simple and efficient in vitro test to investigate critical factors that may impact the drug release and bioavailability at the development stage of a drug-loaded nanoemulsion (NE) is lacking. Thus, in this study, we developed a new combined biphasic and modified cylinder (BP + MC) method to evaluate the dissolution profile of NEs. Flubendazole (FLZ), a Biopharmaceutical Classification System (BCS) Class II drug, offers a new prospective for drug repositioning for treating lung cancer and cryptococcal meningitis. We compared the drug release profiles of three different FLZ formulations (micronized as a suspension, loaded in NE, and solubilized in oil) by using three different methods (dialysis bag, modified cylinder method, and a new BP + MC method). The results showed potential higher drug release of FLZ from the suspension compared to FLZ-loaded NE at pH 1.2, and higher drug release from FLZ-loaded NE compared to other forms in octanol phase. These results correlate well with the in vivo test performed in mice carried out in our previous works. Furthermore, the partition mechanism of the drug released from the NE is discussed in-depth in this article, as well as the advantage of drug-loaded NEs over other preparations in creating supersaturable conditions. Based on the results, we provide new insights into how dissolution methods for a poorly water-solubility drug can be designed. Therefore, we present this new combined BP + MC method as a potential new discriminative dissolution test for future studies when developing drug-loaded NE and comparing with other dosage forms.


Assuntos
Solubilidade , Camundongos , Animais , Preparações Farmacêuticas , Estudos Prospectivos , Liberação Controlada de Fármacos , Composição de Medicamentos , Administração Oral
4.
Braz. J. Pharm. Sci. (Online) ; 59: e22099, 2023. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1439517

RESUMO

Abstract In this study, the manufacturing process of lamivudine (3TC) and zidovudine (AZT) tablets (150+300 mg respectively) was evaluated using statistical process control (SPC) tools. These medicines are manufactured by the Fundação para o Remédio Popular "Chopin Tavares de Lima" (FURP) laboratory, and are distributed free of charge to patients infected with HIV by the Ministry of Health DST/AIDS national program. Data of 529 batches manufactured from 2012 to 2015 were collected. The critical quality attributes of weight variation, uniformity of dosage units, and dissolution were evaluated. Process stability was assessed using control charts, and the capability indices Cp, Cpk, Pp, and Ppk (process capability; process capability adjusted for non-centered distribution; potential or global capability of the process; and potential process capability adjusted for non-centered distribution, respectively) were evaluated. 3TC dissolution data from 2013 revealed a non-centered process and lack of consistency compared to the other years, showing Cpk and Ppk lower than 1.0 and the chance of failure of 2,483 in 1,000,000 tablets. Dissolution data from 2015 showed process improvement, revealed by Cpk and Ppk equal to 2.19 and 1.99, respectively. Overall, the control charts and capability indices showed the variability of the process and special causes. Additionally, it was possible to point out the opportunities for process changes, which are fundamental for understanding and supporting a continuous improvement environment.


Assuntos
Comprimidos/análise , Zidovudina/agonistas , HIV/patogenicidade , Lamivudina/agonistas , Pacientes/classificação , Gestão da Qualidade Total/organização & administração , Honorários e Preços/estatística & dados numéricos , Laboratórios/classificação , Manufaturas/provisão & distribuição
5.
Pharmaceutics ; 14(10)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36297656

RESUMO

Bacterial conjunctivitis significantly impacts public health, including more than one-third of eye diseases reported worldwide. It is an infection caused by various aerobic and anaerobic bacteria and is highly contagious. Therefore, it has a high incidence of bacterial resistance to the antibiotics commonly used for treatment. Among the most recent antibiotics, besifloxacin is a fourth-generation fluoroquinolone antibiotic indicated exclusively for topical ophthalmic use. Due to its importance in treating bacterial conjunctivitis and its low solubility in water, limiting its efficacy, a nanotechnology-based drug delivery preparation was developed to overcome this hurdle. Besifloxacin nanocrystals were prepared by small-scale wet milling and response surface methodology, using Povacoat® as a stabilizer. The particle's average hydrodynamic diameter (Z-ave) was approximately 550 nm (17 times smaller than raw material), with a polydispersity index (PdI) of less than 0.2. The saturation solubility increased about two times compared to the raw material, making it possible to increase the dissolution rate of this drug substance, potentially improving its bioavailability and safety. The optimized preparation was stable under an accelerated stability study (90 days). The Z-ave, PZ, PdI, and content did not alter significantly during this period. Furthermore, the 0.6% m/m besifloxacin nanocrystals at the maximum dose and the Povacoat® stabilizer did not show toxicity in Galleria mellonella larvae. The innovative ophthalmic preparation minimum inhibitory concentration (MIC) was 0.0960 µg/mL and 1.60 µg/mL against Staphylococcus aureus and Pseudomonas aeruginosa, respectively, confirming in vitro efficacy. Therefore, besifloxacin nanocrystals revealed the potential for reduced dosing of the drug substance, with a minor occurrence of adverse effects and greater patient adherence to treatment.

7.
AAPS PharmSciTech ; 23(4): 102, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35378669

RESUMO

Topical microemulsion (ME) might provide a novel and advanced transdermal delivery system due to the enhances of drug solubility and permeability across the stratum corneum. Foams are topical delivery systems that have excellent patient compliance, acceptability, and preference. Therefore, this study aimed to investigate a foamable microemulsion as an alternative topical and transdermal dosage form for diclofenac sodium (DS). The physicochemical properties (optical clarity, percentage transmittance, homogeneity, consistency of formulation, particle size, zeta potential, conductivity, viscosity, and morphology, etc.) of the DS-loaded ME were investigated. The foam stability of both drug-free ME and DS-loaded ME was measured. The foam quality was evaluated, and the chemical stability over 90 days was determined. Franz diffusion cells were employed to assess the in vitro drug release of a foamed DS-loaded ME and compared with a commercial topical product. A foamable and stable DS-loaded ME that maintained small particle sizes and constant zeta potential and was transparent and translucent in appearance after 90 days was successfully produced. The foam of the DS-loaded ME was physically more stable compared to the drug-free foam. The foam had an increased drug release rate compared to the commercial product. The foamable DS-loaded ME has a great potential to enhance the transdermal delivery of DS after topical administration. Foamed DS-loaded ME is a promising alternative to the current topical formulation of DS.


Assuntos
Diclofenaco , Administração Cutânea , Diclofenaco/química , Liberação Controlada de Fármacos , Emulsões/química , Humanos , Solubilidade
8.
Eur J Pharm Sci ; 169: 106097, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34910988

RESUMO

Leishmaniasis, a neglected tropical disease, is prevalent in 98 countries with the occurrence of 1.3 million new cases annually. The conventional therapy for visceral leishmaniasis requires hospitalization due to the severe adverse effects of the drugs, which are administered parenterally. Buparvaquone (BPQ) showed in vitro activity against leishmania parasites; nevertheless, it has failed in vivo tests due to its low aqueous solubility. Though, lipid nanoparticles can overcome this holdback. In this study we tested the hypothesis whether BPQ-NLC shows in vivo activity against L. infantum. Two optimized formulations were prepared (V1: 173.9 ± 1.6 nm, 0.5 mg of BPQ/mL; V2: 232.4 ± 1.6 nm, 1.3 mg of BPQ/mL), both showed increased solubility up to 73.00-fold, and dissolution up to 83.29%, while for the free drug it was only 2.89%. Cytotoxicity test showed their biocompatibility (CC50 >554.4 µM). Besides, the V1 dose of 0.3 mg/kg/day for 10 days reduced the parasite burden in 83.4% ±18.2% (p <0.05) in the liver. BPQ-NLC showed similar leishmanicidal activity compared to miltefosine. Therefore, BPQ-NLC is a promising addition to the limited therapeutic arsenal suitable for leishmaniasis oral administration treatment.


Assuntos
Antiprotozoários , Leishmania infantum , Administração Oral , Antiprotozoários/uso terapêutico , Lipídeos , Lipossomos , Nanopartículas , Naftoquinonas
9.
Braz. J. Pharm. Sci. (Online) ; 58: e20767, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1420452

RESUMO

Abstract The second generation of H1 antihistamines from the piperidine group are often used for treating allergic diseases due to their action on histaminic receptors, the primary mediator of allergy. Moreover, the antihistamines have anti-inflammatory action, mediated through platelet-activating factor blocking activity. A simple and rapid capillary zone electrophoresis method was developed and validated for the determination of loratadine (LOR) and rupatadine (RUP) in tablets. The analyses were carried out using a fused silica capillary of 50.2 cm (40 cm effective length), 75 µm i.d. The background electrolyte was composed of boric acid 35 mmol/L, pH 2.5. Voltage of 20 kV, hydrodynamic injection of 3447.3 Pa for 3s, temperature at 25 ºC, and UV detection at 205 nm were applied. Electrophoretic separation was achieved at 1.8 and 2.8 min for RUP and LOR, respectively. The method was linear for both drugs in a range of 50.0 to 400.0 µg/mL (r>0.99). The limits of detection and quantification were 46.37 and 140.52 µg/mL, for LOR and 29.60 and 89.69 µg/mL for RUP respectively. The precision was less than 5.0 % for both drugs. The average recovery was approximately 100 %. The proposed novel method can significantly contribute to the rapid detection of counterfeit products and in quality control of drug products containing antihistamines


Assuntos
Loratadina/antagonistas & inibidores , Eletroforese Capilar/métodos , Antagonistas dos Receptores Histamínicos H1/farmacologia , Controle de Qualidade , Capilares/anormalidades , Preparações Farmacêuticas/análise , Métodos de Análise Laboratorial e de Campo
10.
Pharm Res ; 38(2): 199-211, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33604785

RESUMO

Currently, the use of Traditional Chinese Medicine (TCM) for healthy living in daily practice is widely accepted across the world. However, not much attention has been paid to the particular characteristics of TCM "pills", one of the classic dosage forms in TCM. For a better understanding, this review was undertaken to provide a modern pharmaceutical overview of pills. Over many centuries, pills have been developed in different types (honeyed pill, water-honeyed pill, watered pill, pasted pill, waxed pill, concentrated pill, and dripping pill) to achieve varying intended TCM release patterns. It suggests that knowledge relating to the impact of binders and excipients on drug release from TCM pills can be traced back to before dissolution testing was invented. Therefore, although Pills may be considered as an ancient and outdated dosage form compared to current drug delivery systems, they have surprisingly modern pharmaceutical properties that is highlighted in this article. In addition, this review found that the quality control standards for TCM pill are globally substantially different. Hence, greater effort should be taken to establish an internationally harmonized and proper standard to safeguard the quality of this dosage form and to ensure the alignment with TCM use.


Assuntos
Composição de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/métodos , Medicamentos de Ervas Chinesas/administração & dosagem , Medicina Tradicional Chinesa/métodos , Liberação Controlada de Fármacos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacocinética , Excipientes/química , Humanos
11.
Colloids Surf B Biointerfaces ; 196: 111336, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32877830

RESUMO

This study investigated the feasibility of polysaccharide-coated poly(n-butyl cyanoacrylate) (PBCA) nanoparticles for oral delivery of acyclovir (ACV). PBCA nanoparticles were obtained by the emulsion polymerization method. Chitosan was chemically modified to obtain N,N,N-trimethylchitosan (TMC), which was used to coat the nanoparticles (PBCA-TMC). Nanoparticles were characterized by dynamic light scattering, zeta potential, differential scanning calorimetry (DSC), atomic force microscopy (AFM), cytotoxicity, and the effect on the transepithelial electrical resistance (TEER) of the Caco-2 cells. The size of the coated nanoparticles (296.2 nm) was significantly larger than uncoated (175.0 nm). Furthermore, PBCA nanoparticles had a negative charge (-11.7 mV), which was inverted to highly positive values (+36.5 mV) after coating. DSC analysis suggested the occurrence of the coating, which was confirmed by AFM images. The MTT assay revealed concentration-dependent cytotoxicity for the core-shell nanoparticles. Additionally, PBCA-TMC caused a significant but reversible decrease in the Caco-2 cell monolayer TEER. Entrapped ACV (PBCA-ACV-TMC), a Biopharmaceutical Classification System class III drug substance, increased approximately 3.25 times the Papp of ACV in the Caco-2 permeability assay. The nanoparticles were also able to provide in vitro ACV controlled release using media with different pH values (1.2; 6.8; 7.4). Accordingly, this new core-shell nanoparticle showed the potential to improve the oral delivery of ACV.


Assuntos
Quitosana , Embucrilato , Nanopartículas , Aciclovir , Células CACO-2 , Portadores de Fármacos , Humanos , Tamanho da Partícula
12.
Int J Pharm ; 587: 119697, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32750440

RESUMO

Cancer related to lymphangiogenesis has gained a great deal of attention in recent decades ever since specific markers of this intriguing system were discovered. Unlike the blood system, the lymphatic system has unique features that can advance cancer in future metastasis, or, conversely, can provide an opportunity to prevent or treat this disease that affects people worldwide. The aim of this review is to show the recent research of cancer treatment associated with the lymphatic system, considered one of the main gateways for disseminating metastatic cells to distant organs. Nanostructured systems based on theranostics and immunotherapies can offer several options for this complex disease. Precision targeting and accumulation of nanomaterials into the tumor sites and their elimination, or targeting the specific immune defense cells to promote optimal regression of cancer cells are highlighted in this paper. Moreover, therapies based on nanostructured systems through lymphatic systems may reduce the side effects and toxicity, avoid first pass hepatic metabolism, and improve patient recovery. We emphasize the general understanding of the association between the immune and lymphatic systems, their interaction with tumor cells, the mechanisms involved and the recent developments in several nanotechnology treatments related to this disease.


Assuntos
Vasos Linfáticos , Nanoestruturas , Neoplasias , Humanos , Linfangiogênese , Sistema Linfático , Neoplasias/tratamento farmacológico , Estudos Prospectivos
13.
Mater Sci Eng C Mater Biol Appl ; 112: 110895, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32409052

RESUMO

Tuberculosis (TB) is one of the top ten causes of death worldwide and a leading cause of death in HIV patients. Rifampicin (Rif), a low water-soluble drug, is a critical first-line treatment and the most effective drug substance for therapy of drug-susceptible TB. However, Rif has high interindividual pharmacokinetic variability, mainly due to its highly variable absorption caused by its poor solubility. Drug nanocrystals are a promising technology to overcome this variability by increasing the surface area. This strategy allows for increasing the dissolution rate and improving the bioavailability of this BCS class II drug. In this study, Rif nanocrystals were prepared by a wet-bead milling method. A 3-factor, 3-level Box-Behnken design was used to investigate the independent variables: the concentration of rifampicin, the concentration of the stabilizing agent (Povacoat® type F), and the mass of zirconia beads. Two optimized formulations, F1-Rif and F2-Rif, were characterized by determining their particle size and size distribution, morphology, crystal properties, and antimicrobial activity. Differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD) revealed that rifampicin's polymorph II crystal structure was unchanged. The reduced particle size of <500 nm (100-fold decrease) increased the saturation solubility and dissolution rate up to 1.74-fold. The novel polymer, Povacoat®, demonstrated to be a suitable stabilizer to maintain the physical stability of nanosuspensions over two years. The Rif nanocrystals showed antimicrobial activity (0.25 µg/mL) not significantly different from standard rifampicin powder. However, the low cytotoxicity of the nanosuspensions in HepG2 cells was determined. When compared to the commercial product, the nanosuspension increased the rifampicin concentration 2-fold. In conclusion, the Rif nanosuspension allows half the needed volume of administration, which might increase compliance among children and elderly patients throughout the long-term treatment of TB.


Assuntos
Antibióticos Antituberculose/química , Nanopartículas/química , Rifampina/química , Antibióticos Antituberculose/farmacologia , Varredura Diferencial de Calorimetria , Sobrevivência Celular/efeitos dos fármacos , Estabilidade de Medicamentos , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Mycobacterium tuberculosis/efeitos dos fármacos , Tamanho da Partícula , Rifampina/farmacologia , Solubilidade , Viscosidade
14.
Colloids Surf B Biointerfaces ; 193: 111097, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32417467

RESUMO

Hydroxymethilnitrofurazone (NFOH) is a nitrofurazone derivative and has potential use in treating leishmaniasis. However, due to low water solubility and bioavailability, NFOH has failed in in vivo tests. Nanostructured lipid carrier (NLC) is an alternative to overcome these limitations by improving pharmacokinetics and modifying drug delivery. This work is focused on developing a novel NFOH-loaded NLC (NLC-NFOH) using a D-optimal mixture statistical design and high-pressure homogenization, for oral administration to treat leishmaniasis. The optimized NLC-NFOH consisted of Mygliol® 840, Gelucire® 50/13, and Precirol® ATO 5 as lipids. These lipids were selected using a rapid methodology Technobis Crystal 16 T M, microscopy, and DSC. Different tools for selecting lipids provided relevant scientific knowledge for the development of the NLC. NLC-NFOH presented a z-average of 198.6 ±â€¯5.4 nm, PDI of 0.11 ±â€¯0.01, and zeta potential of -13.7 ±â€¯0.7 mV. A preliminary in vivo assay was performed by oral administration of NLC-NFOH (2.8 mg/kg) in one healthy male Wistar rat (341 g) by gavage. Blood from the carotid vein was collected, and the sample was analyzed by HPLC. The plasma concentration of NFOH after 5 h of oral administration was 0.22 µg/mL. This same concentration was previously found using free NFOH in the DMSO solution (200 mg/kg), which is an almost 100-fold higher dose. This study allowed a design space development approach of the first NLC-NFOH with the potential to treat leishmaniasis orally.


Assuntos
Desenho de Fármacos , Leishmaniose/tratamento farmacológico , Lipídeos/química , Nanoestruturas/química , Nitrofurazona/análogos & derivados , Administração Oral , Animais , Portadores de Fármacos/química , Avaliação Pré-Clínica de Medicamentos , Estrutura Molecular , Nitrofurazona/administração & dosagem , Nitrofurazona/sangue , Nitrofurazona/uso terapêutico , Tamanho da Partícula , Ratos , Propriedades de Superfície
15.
J Pharm Pharm Sci ; 23(1): 24-46, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32129739

RESUMO

Raman spectroscopy is a very promising technique increasingly used in the pharmaceutical industry. Due to its development and improved instrumental versatility achieved over recent decades and through the application of chemometric methods, this technique has become highly precise and sensitive for the quantification of drug substances. Thus, it has become fundamental in identifying critical variables and their clinical relevance in the development of new drugs. In process monitoring, it has been used to highlight in-line real-time analysis, and it has been used more commonly since 2004 when the Food and Drug Administration (FDA) launched Process Analytical Technology (PAT), integrated with the concepts of Pharmaceutical Current Good Manufacturing Practices (CGMPs) for the 21st Century. The present review presents advances in the application of this tool in the development of pharmaceutical products and processes in the last six years.


Assuntos
Preparações Farmacêuticas/análise , Análise Espectral Raman , Indústria Farmacêutica , Nanoestruturas/análise
16.
Eur J Pharm Biopharm ; 141: 58-69, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31078739

RESUMO

Drug repositioning may be defined as a process when new biological effects for known drugs are identified, leading to recommendations for new therapeutic applications. Niclosamide, present in the Model List of Essential Medicines, from the World Health Organization, has been used since the 1960s for tapeworm infection. Several preclinical studies have been shown its impressive anticancer effects, which led to clinical trials for colon and prostate cancer. Despite high expectations, proof of efficacy and safety are still required, which are associated with diverse biopharmaceutical challenges, such as the physicochemical properties of the drug and its oral absorption, and their relationship with clinical outcomes. Nanostructured systems are innovative drug delivery strategies, which may provide interesting pharmaceutical advantages for this candidate. The aim of this review is to discuss challenges involving niclosamide repositioning for cancer diseases, and the opportunities of therapeutic benefits from nanosctrutured system formulations containing this compound.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/química , Nanoestruturas/química , Neoplasias/tratamento farmacológico , Niclosamida/administração & dosagem , Niclosamida/química , Animais , Composição de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/métodos , Reposicionamento de Medicamentos/métodos , Humanos
17.
J Pharm Sci ; 108(5): 1848-1856, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30599168

RESUMO

Orotic acid (OA), a heterocyclic compound also known as vitamin B13, has shown potent antimalarial and cardiac protection activities; however, its limited water solubility has posed a barrier to its use in therapeutic approaches. Aiming to overcome this drawback, OA freeze-dried nanocrystal formulations (FA, FB, and FC) were developed by using the high-energy milling method. Polysorbate 80 (FA) and povacoat® (FC) were used alone and combined (FB) as stabilizers. Nanocrystals were fully characterized by dynamic light scattering, laser diffraction, transmission electron microscopy, thermal analysis (thermogravimetry and derivative thermogravimetry, and differential scanning calorimetry), and X-ray powder diffraction revealing an acceptable polydispersity index, changes in the crystalline state with hydrate formation and z-average of 100-200 nm, a remarkable 200-time reduction compared to the OA raw material (44.3 µm). Furthermore, saturation solubility study showed an improvement of 13 times higher than the micronized powder. In addition, cytotoxicity assay revealed mild toxicity for the FB and FC formulations prepared with povacoat®. OA nanocrystal platform can deliver innovative products allowing untapped the versatile potential of this drug substance candidate.


Assuntos
Nanopartículas/química , Ácido Orótico/química , Solubilidade/efeitos dos fármacos , Água/química , Animais , Varredura Diferencial de Calorimetria/métodos , Linhagem Celular , Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Liofilização/métodos , Camundongos , Tamanho da Partícula
18.
Int J Pharm ; 547(1-2): 421-431, 2018 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-29886097

RESUMO

Leishmaniases are infectious diseases caused by an intracellular protozoan in humans by 20 different species of Leishmania among more than 53 species. There are at least twelve million cases of infections worldwide and three hundred and fifty million people are at risk in at least 98 developing countries in Africa, South-East Asia, and the Americas. Only Brazil presented high burden for both visceral leishmaniasis (VL) and cutaneous (CL). Chemotherapy is the main means of dealing with this infection. Nevertheless, only a few effective drugs are available, and each has a particular disadvantage; toxicity and long-term regimens compromise most chemotherapeutic options, which decreases patient compliance and adherence to the treatment and consequently the emergence of drug-resistant strains. Nano drug delivery systems (NanoDDS) can direct antileishmanial drug substances for intracellular localization in macrophage-rich organs such as bone marrow, liver, and spleen. This strategy can improve the therapeutic efficacy and reduce the toxic effects of several antileishmanial drug substances. This review is an effort to comprehensively compile recent findings, with the aim of advancing understanding of the importance of nanotechnology for treating leishmaniases.


Assuntos
Antiprotozoários/uso terapêutico , Portadores de Fármacos/química , Leishmania/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Nanomedicina/métodos , Animais , Antiprotozoários/farmacologia , Humanos , Incidência , Leishmaniose/epidemiologia , Leishmaniose/parasitologia , Nanomedicina/tendências , Nanopartículas/química , Resultado do Tratamento
19.
Curr Pharm Des ; 23(3): 495-508, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27799037

RESUMO

Nanoemulsion has the potential to overcome several disadvantages in drug formulation. Loading poor water-soluble drugs in the appropriate nanoemulsions enhances their wettability and/or solubility. Consequently, this improves their pharmacokinetics and pharmacodynamics by different routes of administration. Associated with the optimum nanodroplets size or even combined with key components, the droplets act as a reservoir of drugs, enabling nanoemulsion to be multifunctional platform to treat diverse diseases. A number of important advantages, which comprise nanoemulsion attributes, such as efficient drug release with appropriate rate, prolonged efficacy, drug uptake control, low side effects and drug protection properties from enzymatic or oxidative processes, have been reported in last decade. The high flexibility of nanoemulsion includes also a variety of manufacturing process options and a combination of widely assorted components such as surfactants, liquid lipids or even drug-conjugates. These features provide alternatives for designing innovative nanoemulsions aiming at high-value applications. This review presents the challenges and prospects of different nanoemulsion types and its application. The drug interaction with the components of the formulation, as well as the drug mechanistic interaction with the biological environment of different routes of administration are also presented.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas/química , Preparações Farmacêuticas/química , Composição de Medicamentos , Emulsões/química , Lipídeos/química , Tamanho da Partícula , Solubilidade , Propriedades de Superfície , Tensoativos/química , Molhabilidade
20.
Pharm Dev Technol ; 21(7): 812-822, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27825283

RESUMO

Recently, several approaches have been reported to improve the dissolution rate and bioavailability of furosemide, a class IV drug. However, to the best of our knowledge, none of them proposed nanocrystals. In the last decade, nanocrystals successfully addressed solubility issues by increasing surface area and saturation solubility, both leading to an increase in the dissolution rate of poor water soluble drugs. The preparation of furosemide nanocrystals was by a rotation revolution mixer method. Size distribution and morphology were performed using laser diffraction and scanning electron microscopy, respectively. In addition, differential scanning calorimetry, thermogravimetry, X-ray powder diffraction (XRD) and low frequency shift-Raman spectroscopy allowed investigating the thermal properties and crystalline state. Solubility saturation and intrinsic dissolution rate (IDR) studies were conducted. The thermal analysis revealed lower melting range for the nanocrystals comparing to furosemide. Moreover, a slight crystalline structure change to the amorphous state was observed by XRD and confirmed by low frequency shift Raman. The particle size was reduced to 231 nm with a polydispersity index of 0.232, a 30-fold reduction from the original powder. Finally, the saturation solubility and IDR showed a significant increase. Furosemide nanocrystals showed potential for development of innovative formulations as an alternative to the commercial products.


Assuntos
Furosemida/química , Nanopartículas/química , Varredura Diferencial de Calorimetria/métodos , Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Microscopia Eletrônica de Varredura/métodos , Tamanho da Partícula , Rotação , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Água/química , Difração de Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...